Sunday, November 27, 2022
HomeNanotechnologyA multifunctional chemical toolbox to engineer carbon dots for biomedical and power...

A multifunctional chemical toolbox to engineer carbon dots for biomedical and power purposes


  • Xu, X. et al. Electrophoretic evaluation and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 126, 12736–12737 (2004).

    CAS 

    Google Scholar
     

  • Solar, Y.-P. et al. Quantum-sized carbon dots for brilliant and colourful photoluminescence. J. Am. Chem. Soc. 128, 7756–7757 (2006).

    CAS 

    Google Scholar
     

  • Bourlinos, A. B. et al. Floor functionalized carbogenic quantum dots. Small 4, 455–458 (2008).

    CAS 

    Google Scholar
     

  • Li, H. et al. Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew. Chem. Int. Ed. 49, 4430–4434 (2010).

    CAS 

    Google Scholar
     

  • Algar, W. R. et al. Photoluminescent nanoparticles for chemical and organic evaluation and imaging. Chem. Rev. 121, 9243–9358 (2021).

    CAS 

    Google Scholar
     

  • Xia, C., Zhu, S., Feng, T., Yang, M. & Yang, B. Evolution and synthesis of carbon dots: from carbon dots to carbonized polymer dots. Adv. Sci. 6, 1901316 (2019).

    CAS 

    Google Scholar
     

  • Baker, S. N. & Baker, G. A. Luminescent carbon nanodots: emergent nanolights. Angew. Chem. Int. Ed. 49, 6726–6744 (2010).

    CAS 

    Google Scholar
     

  • Yao, B., Huang, H., Liu, Y. & Kang, Z. Carbon dots: a small conundrum. Traits Chem. 1, 235–246 (2019).

    CAS 

    Google Scholar
     

  • Liu, J., Li, R. & Yang, B. Carbon dots: a brand new kind of carbon-based nanomaterial with vast purposes. ACS Cent. Sci. 6, 2179–2195 (2020).

    CAS 

    Google Scholar
     

  • Arcudi, F., Ðorđević, L. & Prato, M. Design, synthesis, and functionalization methods of tailor-made carbon nanodots. Acc. Chem. Res. 52, 2070–2079 (2019).

    CAS 

    Google Scholar
     

  • Miao, S. et al. Hetero-atom-doped carbon dots: doping methods, properties and purposes. Nano Right now 33, 100879 (2020).

    CAS 

    Google Scholar
     

  • Semeniuk, M. et al. Future views and assessment on natural carbon dots in digital purposes. ACS Nano 13, 6224–6255 (2019).

    CAS 

    Google Scholar
     

  • Hu, C., Li, M., Qiu, J. & Solar, Y. P. Design and fabrication of carbon dots for power conversion and storage. Chem. Soc. Rev. 48, 2315–2337 (2019).

    CAS 

    Google Scholar
     

  • Li, H. et al. Latest advances in carbon dots for bioimaging purposes. Nanoscale Horiz. 5, 218–234 (2020).

    CAS 

    Google Scholar
     

  • Chung, Y. J., Kim, J. & Park, C. B. Photonic carbon dots as an rising nanoagent for biomedical and healthcare purposes. ACS Nano 14, 6470–6497 (2020).

    CAS 

    Google Scholar
     

  • Dhenadhayalan, N., Lin, Ok. C. & Saleh, T. A. Latest advances in functionalized carbon dots towards the design of environment friendly supplies for sensing and catalysis purposes. Small 16, 1905767 (2020).

    CAS 

    Google Scholar
     

  • Liu, Y. et al. Advances in carbon dots: from the attitude of conventional quantum dots. Mater. Chem. Entrance. 4, 1586–1613 (2020).

    CAS 

    Google Scholar
     

  • Yang, S. et al. C3N—a 2D crystalline, hole-free, tunable-narrow-bandgap semiconductor with ferromagnetic properties. Adv. Mater. 29, 1605625 (2017).


    Google Scholar
     

  • Yuan, F. et al. Engineering triangular carbon quantum dots with unprecedented slender bandwidth emission for multicolored LEDs. Nat. Commun. 9, 2249 (2018).


    Google Scholar
     

  • Soni, N. et al. Absorption and emission of sunshine in crimson emissive carbon nanodots. Chem. Sci. 12, 3615–3626 (2021).

    CAS 

    Google Scholar
     

  • Jiang, Ok. et al. Crimson, inexperienced, and blue luminescence by carbon dots: full-color emission tuning and multicolor mobile imaging. Angew. Chem. Int. Ed. 54, 5360–5363 (2015).

    CAS 

    Google Scholar
     

  • Ding, H. et al. Solvent-controlled synthesis of extremely luminescent carbon dots with a large coloration gamut and narrowed emission peak widths. Small 14, 1800612 (2018).


    Google Scholar
     

  • Moon, B. J. et al. Construction-controllable development of nitrogenated graphene quantum dots by way of solvent catalysis for selective C–N bond activation. Nat. Commun. 12, 5879 (2021).

    CAS 

    Google Scholar
     

  • Wang, L. et al. Full-color fluorescent carbon quantum dots. Sci. Adv. 6, eabb6772 (2020).

    CAS 

    Google Scholar
     

  • Wang, B. et al. Rational design of multi-color-emissive carbon dots in a single response system by hydrothermal. Adv. Sci. 8, 2001453 (2021).

    CAS 

    Google Scholar
     

  • Liu, J. J. et al. One-step hydrothermal synthesis of nitrogen-doped conjugated carbonized polymer dots with 31% environment friendly crimson emission for in vivo imaging. Small 14, 1703919 (2018).


    Google Scholar
     

  • Wei, S. M. et al. ZnCl2 enabled synthesis of extremely crystalline and emissive carbon dots with distinctive functionality to generate O2. Matter 2, 495–506 (2020).


    Google Scholar
     

  • Liu, Ok. Ok. et al. Environment friendly crimson/near-infrared-emissive carbon nanodots with multiphoton excited upconversion fluorescence. Adv. Sci. 6, 1900766 (2019).


    Google Scholar
     

  • Liang, W. et al. On the parable of ‘crimson/near-IR carbon quantum dots’ from thermal processing of particular colorless natural precursors. Nanoscale Adv. 3, 4186–4195 (2021).

    CAS 

    Google Scholar
     

  • Holá, Ok. et al. Graphitic nitrogen triggers crimson fluorescence in carbon dots. ACS Nano 11, 12402–12410 (2017).


    Google Scholar
     

  • Yan, Y. et al. van der Waals heterojunction between a bottom-up grown doped graphene quantum dot and graphene for photoelectrochemical water splitting. ACS Nano 14, 1185–1195 (2020).

    CAS 

    Google Scholar
     

  • Do, S. et al. N,S-induced digital states of carbon nanodots towards white electroluminescence. Adv. Choose. Mater. 4, 276–284 (2016).

    CAS 

    Google Scholar
     

  • Ding, H., Yu, S.-B., Wei, J.-S. & Xiong, H.-M. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 10, 484–491 (2016).

    CAS 

    Google Scholar
     

  • Nguyen, H. A., Srivastava, I., Pan, D. & Gruebele, M. Unraveling the fluorescence mechanism of carbon dots with sub-single-particle decision. ACS Nano 14, 6127–6137 (2020).

    CAS 

    Google Scholar
     

  • Miao, X. et al. Synthesis of carbon dots with a number of coloration emission by managed graphitization and floor functionalization. Adv. Mater. 30, 1704740 (2018).


    Google Scholar
     

  • Singh, P. et al. Natural functionalisation and characterisation of single-walled carbon nanotubes. Chem. Soc. Rev. 38, 2214–2230 (2009).

    CAS 

    Google Scholar
     

  • Sweetman, M. J., Hickey, S. M., Brooks, D. A., Hayball, J. D. & Plush, S. E. A sensible information to organize and synthetically modify graphene quantum dots. Adv. Funct. Mater. 29, 1808740 (2019).


    Google Scholar
     

  • Tetsuka, H., Nagoya, A., Fukusumi, T. & Matsui, T. Molecularly designed, nitrogen-functionalized graphene quantum dots for optoelectronic gadgets. Adv. Mater. 28, 4632–4638 (2016).

    CAS 

    Google Scholar
     

  • Yan, Y. et al. Systematic bandgap engineering of graphene quantum dots and purposes for photocatalytic water splitting and CO2 discount. ACS Nano 12, 3523–3532 (2018).

    CAS 

    Google Scholar
     

  • Sekiya, R., Uemura, Y., Murakami, H. & Haino, T. White-light-emitting edge-functionalized graphene quantum dots. Angew. Chem. Int. Ed. 53, 5619–5623 (2014).

    CAS 

    Google Scholar
     

  • Yamato, Ok., Sekiya, R., Suzuki, Ok. & Haino, T. Close to-infrared-emitting nitrogen-doped nanographenes. Angew. Chem. Int. Ed. 58, 9022–9026 (2019).

    CAS 

    Google Scholar
     

  • Kwon, W. et al. Excessive color-purity inexperienced, orange, and crimson light-emitting diodes based mostly on chemically functionalized graphene quantum dots. Sci. Rep. 6, 24205 (2016).

    CAS 

    Google Scholar
     

  • Kim, J. Ok. et al. Balancing mild absorptivity and service conductivity of graphene quantum dots for high-efficiency bulk heterojunction photo voltaic cells. ACS Nano 7, 7207–7212 (2013).

    CAS 

    Google Scholar
     

  • Chen, X. et al. Incorporating graphitic carbon nitride (g-C3N4) quantum dots into bulk-heterojunction polymer photo voltaic cells results in effectivity enhancement. Adv. Funct. Mater. 26, 1719–1728 (2016).

    CAS 

    Google Scholar
     

  • Hutton, G. A. M. et al. Carbon dots as versatile photosensitizers for solar-driven catalysis with redox enzymes. J. Am. Chem. Soc. 138, 16722–16730 (2016).

    CAS 

    Google Scholar
     

  • Kim, J. et al. Biocatalytic C=C bond discount by carbon nanodot-sensitized regeneration of NADH analogues. Angew. Chem. Int. Ed. 57, 13825–13828 (2018).

    CAS 

    Google Scholar
     

  • Holá, Ok. et al. Carbon dots and [FeFe] hydrogenase biohybrid assemblies for environment friendly light-driven hydrogen evolution. ACS Catal. 10, 9943–9952 (2020).


    Google Scholar
     

  • Martindale, B. C. M. et al. Enhancing mild absorption and cost switch effectivity in carbon dots by graphitization and core nitrogen doping. Angew. Chem. Int. Ed. 56, 6459–6463 (2017).

    CAS 

    Google Scholar
     

  • Choi, Y., Jeon, D., Choi, Y., Ryu, J. & Kim, B.-S. Self-assembled supramolecular hybrid of carbon nanodots and polyoxometalates for visible-light-driven water oxidation. ACS Appl. Mater. Interfaces 10, 13434–13441 (2018).

    CAS 

    Google Scholar
     

  • Achilleos, D. S. et al. Photo voltaic reforming of biomass with homogeneous carbon dots. Angew. Chem. Int. Ed. 59, 18184–18188 (2020).

    CAS 

    Google Scholar
     

  • Rigodanza, F., Đorđević, L., Arcudi, F. & Prato, M. Customizing the electrochemical properties of carbon nanodots through the use of quinones in bottom-up synthesis. Angew. Chem. Int. Ed. 57, 5062–5067 (2018).

    CAS 

    Google Scholar
     

  • Cailotto, S. et al. Carbon dots as photocatalysts for natural synthesis: metal-free methylene–oxygen-bond photocleavage. Inexperienced Chem. 22, 1145–1149 (2020).


    Google Scholar
     

  • Wang, Y. et al. Distinctive hole-accepting carbon-dots selling selective carbon dioxide discount practically 100% to methanol by pure water. Nat. Commun. 11, 2531 (2020).

    CAS 

    Google Scholar
     

  • Bhattacharyya, S. et al. Impact of nitrogen atom positioning on the trade-off between emissive and photocatalytic properties of carbon dots. Nat. Commun. 8, 1401 (2017).


    Google Scholar
     

  • Fang, J. et al. Photobase impact for just-in-time supply in photocatalytic hydrogen technology. Nat. Commun. 11, 5179 (2020).

    CAS 

    Google Scholar
     

  • Gazzetto, M. et al. Photocycle of excitons in nitrogen-rich carbon nanodots: implications for photocatalysis and photovoltaics. ACS Appl. Nano Mater. 3, 6925–6934 (2020).

    CAS 

    Google Scholar
     

  • Yeh, T.-F., Teng, C.-Y., Chen, S.-J. & Teng, H. Nitrogen-doped graphene oxide quantum dots as photocatalysts for total water-splitting below seen mild illumination. Adv. Mater. 26, 3297–3303 (2014).

    CAS 

    Google Scholar
     

  • Liu, J. et al. Carbon nanodot floor modifications provoke extremely environment friendly, secure catalysts for each oxygen evolution and discount reactions. Adv. Vitality Mater. 6, 1502039 (2016).


    Google Scholar
     

  • Li, Q., Zhang, S., Dai, L. & Li, L. S. Nitrogen-doped colloidal graphene quantum dots and their size-dependent electrocatalytic exercise for the oxygen discount response. J. Am. Chem. Soc. 134, 18932–18935 (2012).

    CAS 

    Google Scholar
     

  • Li, Y. et al. Nitrogen-doped graphene quantum dots with oxygen-rich practical teams. J. Am. Chem. Soc. 134, 15–18 (2012).

    CAS 

    Google Scholar
     

  • Van Tam, T. et al. Synthesis of B-doped graphene quantum dots as a metal-free electrocatalyst for the oxygen discount response. J. Mater. Chem. A 5, 10537–10543 (2017).


    Google Scholar
     

  • Wu, W. et al. Cu–N dopants enhance electron switch and photooxidation reactions of carbon dots. Angew. Chem. Int. Ed. 54, 6540–6544 (2015).

    CAS 

    Google Scholar
     

  • Wu, W. et al. Synergies between unsaturated Zn/Cu doping websites in carbon dots present new pathways for photocatalytic oxidation. ACS Catal. 8, 747–753 (2018).

    CAS 

    Google Scholar
     

  • Li, H. et al. Carbon quantum dots with photo-generated proton property as environment friendly seen mild managed acid catalyst. Nanoscale 6, 867–873 (2014).

    CAS 

    Google Scholar
     

  • Han, Y. et al. Carbon quantum dots with photoenhanced hydrogen-bond catalytic exercise in aldol condensations. ACS Catal. 4, 781–787 (2014).

    CAS 

    Google Scholar
     

  • Filippini, G., Prato, M. & Rosso, C. Carbon dots as nano-organocatalysts for artificial purposes. ACS Catal. 10, 8090–8105 (2020).


    Google Scholar
     

  • Li, H. et al. Sulfated carbon quantum dots as environment friendly visible-light switchable acid catalysts for room-temperature ring-opening reactions. Angew. Chem. Int. Ed. 54, 8420–8424 (2015).

    CAS 

    Google Scholar
     

  • Pei, X. et al. Reversible part switch of carbon dots between an natural part and aqueous resolution triggered by CO2. Angew. Chem. Int. Ed. 57, 3687–3691 (2018).

    CAS 

    Google Scholar
     

  • Chen, L. C. et al. Synergy between quantum confinement and chemical performance of graphene dots promotes photocatalytic H2 evolution. J. Mater. Chem. A 6, 18216–18224 (2018).

    CAS 

    Google Scholar
     

  • Qu, S. et al. Towards environment friendly orange emissive carbon nanodots by conjugated sp2-domain controlling and floor prices engineering. Adv. Mater. 28, 3516–3521 (2016).

    CAS 

    Google Scholar
     

  • Yuan, F. et al. Vivid multicolor bandgap fluorescent carbon quantum dots for electroluminescent light-emitting diodes. Adv. Mater. 29, 1604436 (2017).


    Google Scholar
     

  • Jia, H. et al. Electroluminescent heat white mild‐emitting diodes based mostly on passivation enabled brilliant crimson bandgap emission carbon quantum dots. Adv. Sci. 6, 1900397 (2019).


    Google Scholar
     

  • Wolk, A. et al. A novel lubricant based mostly on covalent functionalized graphene oxide quantum dots. Sci. Rep. 8, 5843 (2018).


    Google Scholar
     

  • Zhou, Y. et al. Colloidal carbon dots based mostly extremely secure luminescent photo voltaic concentrators. Nano Vitality 44, 378–387 (2018).

    CAS 

    Google Scholar
     

  • Miltenburg, M. B., Schon, T. B., Kynaston, E. L., Manion, J. G. & Seferos, D. S. Electrochemical polymerization of functionalized graphene quantum dots. Chem. Mater. 29, 6611–6615 (2017).

    CAS 

    Google Scholar
     

  • Bhattacharya, S. et al. Fluorescent self-healing carbon dot/polymer gels. ACS Nano 13, 1433–1442 (2019).

    CAS 

    Google Scholar
     

  • Ðorđević, L., Arcudi, F. & Prato, M. Preparation, functionalization and characterization of engineered carbon nanodots. Nat. Protocols 14, 2931–2953 (2019).


    Google Scholar
     

  • Cacioppo, M. et al. Symmetry-breaking charge-transfer chromophore interactions supported by carbon nanodots. Angew. Chem. Int. Ed. 59, 12779–12784 (2020).

    CAS 

    Google Scholar
     

  • Carrara, S., Arcudi, F., Prato, M. & De Cola, L. Amine-rich nitrogen-doped carbon nanodots as a platform for self-enhancing electrochemiluminescence. Angew. Chem. Int. Ed. 56, 4757–4761 (2017).

    CAS 

    Google Scholar
     

  • Đorđević, L. et al. Synthesis and excited state processes of arrays containing amine-rich carbon dots and unsymmetrical rylene diimides. Mater. Chem. Entrance. 4, 3640–3648 (2020).


    Google Scholar
     

  • Arcudi, F. et al. Porphyrin antennas on carbon nanodots: excited state power and electron transduction. Angew. Chem. Int. Ed. 56, 12097–12101 (2017).

    CAS 

    Google Scholar
     

  • Yang, S. et al. Selenium doped graphene quantum dots as an ultrasensitive redox fluorescent change. Chem. Mater. 27, 2004–2011 (2015).

    CAS 

    Google Scholar
     

  • Wang, Y. et al. Multicenter-emitting carbon dots: coloration tunable fluorescence and dynamics monitoring oxidative stress in vivo. Chem. Mater. 32, 8146–8157 (2020).

    CAS 

    Google Scholar
     

  • Xu, Y. et al. Lowered carbon dots versus oxidized carbon dots: photo- and electrochemiluminescence investigations for chosen purposes. Chem. Eur. J. 19, 6282–6288 (2013).

    CAS 

    Google Scholar
     

  • Yuan, F. et al. Vivid high-colour-purity deep-blue carbon dot light-emitting diodes by way of environment friendly edge amination. Nat. Photon. 14, 171–176 (2020).

    CAS 

    Google Scholar
     

  • Zhang, H. et al. Carbon dots in porous supplies: host–visitor synergy for enhanced efficiency. Angew. Chem. Int. Ed. 59, 19390–19402 (2020).

    CAS 

    Google Scholar
     

  • Du, X. Y., Wang, C. F., Wu, G. & Chen, S. The fast and large-scale manufacturing of carbon quantum dots and their integration with polymers. Angew. Chem. Int. Ed. 60, 8585–8595 (2021).

    CAS 

    Google Scholar
     

  • Rizzo, C. et al. Nitrogen-doped carbon nanodots-ionogels: preparation, characterization, and radical scavenging exercise. ACS Nano 12, 1296–1305 (2018).

    CAS 

    Google Scholar
     

  • Zhao, S. et al. Enhanced exercise for CO2 electroreduction on a extremely lively and secure ternary Au-CDots-C3N4 electrocatalyst. ACS Catal. 8, 188–197 (2018).

    CAS 

    Google Scholar
     

  • Wang, Y., Godin, R., Durrant, J. R. & Tang, J. Environment friendly gap trapping in carbon dot/oxygen‐modified carbon nitride heterojunction photocatalysts for enhanced methanol manufacturing from CO2 below impartial circumstances. Angew. Chem. Int. Ed. 60, 20811–20816 (2021).

    CAS 

    Google Scholar
     

  • Liu, J. et al. Steel-free environment friendly photocatalyst for secure seen water splitting by way of a two-electron pathway. Science 347, 970–974 (2015).

    CAS 

    Google Scholar
     

  • Guo, S. et al. A Co3O4-CDots-C3N4 three element electrocatalyst design idea for environment friendly and tunable CO2 discount to syngas. Nat. Commun. 8, 1828 (2017).


    Google Scholar
     

  • Wu, Q. et al. A metal-free photocatalyst for extremely environment friendly hydrogen peroxide photoproduction in actual seawater. Nat. Commun. 12, 483 (2021).

    CAS 

    Google Scholar
     

  • Zhu, C. et al. Carbon dots as fillers inducing therapeutic/self-healing and anticorrosion properties in polymers. Adv. Mater. 29, 1701399 (2017).


    Google Scholar
     

  • Liang, Y. C. et al. Lifetime-engineered carbon nanodots for time division duplexing. Adv. Sci. 8, 2003433 (2021).

    CAS 

    Google Scholar
     

  • Xu, A. et al. Carbon‐based mostly quantum dots with strong‐state photoluminescent: mechanism, implementation, and utility. Small 16, 2004621 (2020).

    CAS 

    Google Scholar
     

  • Tian, Z. et al. Full-color inorganic carbon dot phosphors for white-light-emitting diodes. Adv. Choose. Mater. 5, 1700416 (2017).


    Google Scholar
     

  • Wang, F., Xie, Z., Zhang, H., Liu, C. Y. & Zhang, Y. G. Extremely luminescent organosilane-functionalized carbon dots. Adv. Funct. Mater. 21, 1027–1031 (2011).

    CAS 

    Google Scholar
     

  • Li, W. et al. Carbon-quantum-dots-loaded ruthenium nanoparticles as an environment friendly electrocatalyst for hydrogen manufacturing in alkaline media. Adv. Mater. 30, 1800676 (2018).


    Google Scholar
     

  • Tang, D. et al. Carbon quantum dot/NiFe layered double-hydroxide composite as a extremely environment friendly electrocatalyst for water oxidation. ACS Appl. Mater. Interfaces 6, 7918–7925 (2014).

    CAS 

    Google Scholar
     

  • Wei, J.-S. et al. Carbon dots/NiCo2O4 nanocomposites with varied morphologies for top efficiency supercapacitors. Small 12, 5927–5934 (2016).

    CAS 

    Google Scholar
     

  • Jin, S. et al. A common graphene quantum dot tethering design technique to synthesize single-atom catalysts. Angew. Chem. Int. Ed. 59, 21885–21889 (2020).

    CAS 

    Google Scholar
     

  • Hu, C. et al. Nitrogen-doped carbon dots adorned on graphene: a novel all-carbon hybrid electrocatalyst for enhanced oxygen discount response. Chem. Commun. 51, 3419–3422 (2015).

    CAS 

    Google Scholar
     

  • Jiang, Ok., Wang, Y., Cai, C. & Lin, H. Activating room temperature lengthy afterglow of carbon dots by way of covalent fixation. Chem. Mater. 29, 4866–4873 (2017).

    CAS 

    Google Scholar
     

  • Jiang, Ok., Wang, Y., Cai, C. & Lin, H. Conversion of carbon dots from fluorescence to ultralong room-temperature phosphorescence by heating for safety purposes. Adv. Mater. 30, 1800783 (2018).


    Google Scholar
     

  • Jiang, Ok. et al. Carbon dots with dual-emissive, strong, and aggregation-induced room-temperature phosphorescence traits. Angew. Chem. Int. Ed. 59, 1263–1269 (2020).

    CAS 

    Google Scholar
     

  • Zheng, Y. et al. Close to‐infrared‐excited multicolor afterglow in carbon dots‐based mostly room‐temperature afterglow supplies. Angew. Chem. Int. Ed. 60, 22253–22259 (2021).

    CAS 

    Google Scholar
     

  • Wang, B. et al. Carbon dots in a matrix: energy-transfer-enhanced room-temperature crimson phosphorescence. Angew. Chem. Int. Ed. 58, 18443–18448 (2019).

    CAS 

    Google Scholar
     

  • Gao, Y. et al. Technique for activating room-temperature phosphorescence of carbon dots in aqueous environments. Chem. Mater. 31, 7979–7986 (2019).

    CAS 

    Google Scholar
     

  • Li, Z., Wang, L., Li, Y., Feng, Y. & Feng, W. Frontiers in carbon dots: design, properties and purposes. Mater. Chem. Entrance. 3, 2571–2601 (2019).

    CAS 

    Google Scholar
     

  • Liu, Y. et al. Picture-induced ultralong phosphorescence of carbon dots for thermally delicate dynamic patterning. Chem. Sci. 12, 8199–8206 (2021).

    CAS 

    Google Scholar
     

  • Yu, H. et al. Carbon quantum dots/TiO2 composites for environment friendly photocatalytic hydrogen evolution. J. Mater. Chem. A 2, 3344–3351 (2014).

    CAS 

    Google Scholar
     

  • Xu, C. et al. Sulfur-doped graphitic carbon nitride adorned with graphene quantum dots for an environment friendly metal-free electrocatalyst. J. Mater. Chem. A 3, 1841–1846 (2015).

    CAS 

    Google Scholar
     

  • Yang, C. et al. Nitrogen-doped carbon dots with excitation-independent long-wavelength emission produced by a room-temperature response. Chem. Commun. 52, 11912–11914 (2016).

    CAS 

    Google Scholar
     

  • Geng, B. et al. NIR-responsive carbon dots for environment friendly photothermal most cancers remedy at low energy densities. Carbon 134, 153–162 (2018).

    CAS 

    Google Scholar
     

  • Ge, J. et al. Crimson-emissive carbon dots for fluorescent, photoacoustic, and thermal theranostics in residing mice. Adv. Mater. 27, 4169–4177 (2015).

    CAS 

    Google Scholar
     

  • Lan, M. et al. Two-photon-excited near-infrared emissive carbon dots as multifunctional brokers for fluorescence imaging and photothermal remedy. Nano Res. 10, 3113–3123 (2017).

    CAS 

    Google Scholar
     

  • Hasan, M. T. et al. Uncommon-earth steel ions doped graphene quantum dots for near-IR in vitro/in vivo/ex vivo imaging purposes. Adv. Choose. Mater. 8, 2000897 (2020).

    CAS 

    Google Scholar
     

  • Zheng, M. et al. One-pot to synthesize multifunctional carbon dots for close to infrared fluorescence imaging and photothermal most cancers remedy. ACS Appl. Mater. Interfaces 8, 23533–23541 (2016).

    CAS 

    Google Scholar
     

  • Bao, X. et al. In vivo theranostics with near-infrared-emitting carbon dots—extremely environment friendly photothermal remedy based mostly on passive concentrating on after intravenous administration. Mild Sci. Appl. 7, 91 (2018).


    Google Scholar
     

  • Li, Y., Bai, G., Zeng, S. & Hao, J. Theranostic carbon dots with modern NIR-II emission for in vivo renal-excreted optical imaging and photothermal remedy. ACS Appl. Mater. Interfaces 11, 4737–4744 (2019).

    CAS 

    Google Scholar
     

  • Jiang, L. et al. UV–Vis–NIR full-range responsive carbon dots with giant multiphoton absorption cross sections and deep-red fluorescence at nucleoli and in vivo. Small 16, 2000680 (2020).

    CAS 

    Google Scholar
     

  • Ge, J. et al. A graphene quantum dot photodynamic remedy agent with excessive singlet oxygen technology. Nat. Commun. 5, 4596 (2014).

    CAS 

    Google Scholar
     

  • Shen, Y., Shuhendler, A. J., Ye, D., Xu, J. J. & Chen, H. Y. Two-photon excitation nanoparticles for photodynamic remedy. Chem. Soc. Rev. 45, 6725–6741 (2016).

    CAS 

    Google Scholar
     

  • Kuo, W. S. et al. Two-photon photoexcited photodynamic remedy and distinction agent with antimicrobial graphene quantum dots. ACS Appl. Mater. Interfaces 8, 30467–30474 (2016).

    CAS 

    Google Scholar
     

  • Ge, J. et al. Carbon dots with intrinsic theranostic properties for bioimaging, red-light-triggered photodynamic/photothermal simultaneous remedy in vitro and in vivo. Adv. Healthc. Mater. 5, 665–675 (2016).

    CAS 

    Google Scholar
     

  • Guo, X. L. et al. A novel technique of transition-metal doping to engineer absorption of carbon dots for near-infrared photothermal/photodynamic therapies. Carbon 134, 519–530 (2018).

    CAS 

    Google Scholar
     

  • Lan, M. et al. Carbon dots as multifunctional phototheranostic brokers for photoacoustic/fluorescence imaging and photothermal/photodynamic synergistic most cancers remedy. Adv. Ther. 1, 1800077 (2018).


    Google Scholar
     

  • Anwar, S. et al. Latest advances in synthesis, optical properties, and biomedical purposes of carbon dots. ACS Appl. Bio Mater. 2, 2317–2338 (2019).


    Google Scholar
     

  • Bourlinos, A. B. et al. Gd(III)-doped carbon dots as a twin fluorescent–MRI probe. J. Mater. Chem. 22, 23327–23330 (2012).

    CAS 

    Google Scholar
     

  • Bouzas-Ramos, D. et al. Carbon quantum dots codoped with nitrogen and lanthanides for multimodal imaging. Adv. Funct. Mater. 29, 1903884 (2019).


    Google Scholar
     

  • Chen, H. et al. Gadolinium-encapsulated graphene carbon nanotheranostics for imaging-guided photodynamic remedy. Adv. Mater. 30, 1802748 (2018).


    Google Scholar
     

  • Wang, H. et al. Paramagnetic properties of metal-free boron-doped graphene quantum dots and their utility for protected magnetic resonance imaging. Adv. Mater. 29, 1605416 (2017).


    Google Scholar
     

  • Zhang, J. et al. Carbon dots as a brand new class of diamagnetic chemical alternate saturation switch (diaCEST) MRI distinction brokers. Angew. Chem. Int. Ed. 58, 9871–9875 (2019).

    CAS 

    Google Scholar
     

  • Wang, Z. et al. Carbon dots induce epithelial–mesenchymal transition for selling cutaneous wound therapeutic by way of activation of TGF-β/p38/Snail pathway. Adv. Funct. Mater. 30, 2004886 (2020).

    CAS 

    Google Scholar
     

  • Li, S. et al. Focused tumour theranostics in mice by way of carbon quantum dots structurally mimicking giant amino acids. Nat. Biomed. Eng. 4, 704–716 (2020).

    CAS 

    Google Scholar
     

  • Das, A. et al. Chiral carbon dots based mostly on l/d-cysteine produced by way of room temperature floor modification and one-pot carbonization. Nanoscale 13, 8058–8066 (2021).

    CAS 

    Google Scholar
     

  • Li, F. et al. Chiral carbon dots mimicking topoisomerase I to mediate the topological rearrangement of supercoiled DNA enantioselectively. Angew. Chem. Int. Ed. 59, 11087–11092 (2020).

    CAS 

    Google Scholar
     

  • Li, F. et al. Extremely fluorescent chiral N-S-doped carbon dots from cysteine: affecting mobile power metabolism. Angew. Chem. Int. Ed. 57, 2377–2382 (2018).

    CAS 

    Google Scholar
     

  • Ðorđević, L. et al. Design rules of chiral carbon nanodots assist convey chirality from molecular to nanoscale stage. Nat. Commun. 9, 3442 (2018).


    Google Scholar
     

  • Arcudi, F. et al. Lighting up the electrochemiluminescence of carbon dots by pre- and post-synthetic design. Adv. Sci. 8, 2100125 (2021).

    CAS 

    Google Scholar
     

  • Jian, H. J. et al. Tremendous-cationic carbon quantum dots synthesized from spermidine as a watch drop formulation for topical remedy of bacterial keratitis. ACS Nano 11, 6703–6716 (2017).

    CAS 

    Google Scholar
     

  • Nel, A. E. et al. Understanding biophysicochemical interactions on the nano–bio interface. Nat. Mater. 8, 543–557 (2009).

    CAS 

    Google Scholar
     

  • Hassan, S. & Singh, A. V. Biophysicochemical perspective of nanoparticle compatibility: a critically ignored parameter in nanomedicine. J. Nanosci. Nanotechnol. 14, 402–414 (2014).

    CAS 

    Google Scholar
     

  • Unnikrishnan, B., Wu, R. S., Wei, S. C., Huang, C. C. & Chang, H. T. Fluorescent carbon dots for selective labeling of subcellular organelles. ACS Omega 5, 11248–11261 (2020).

    CAS 

    Google Scholar
     

  • Pang, W. et al. Nucleolus-targeted photodynamic anticancer remedy utilizing renal-clearable carbon dots. Adv. Healthc. Mater. 9, 2000607 (2020).

    CAS 

    Google Scholar
     

  • Rosenkrans, Z. T. et al. Selenium-doped carbon quantum dots act as broad-spectrum antioxidants for acute kidney harm administration. Adv. Sci. 7, 2000420 (2020).

    CAS 

    Google Scholar
     

  • Solar, S. et al. Ce6-modified carbon dots for multimodal-imaging-guided and single-NIR-laser-triggered photothermal/photodynamic synergistic most cancers remedy by diminished irradiation energy. ACS Appl. Mater. Interfaces 11, 5791–5803 (2019).

    CAS 

    Google Scholar
     

  • Liu, R. et al. Aptamer and IR820 dual-functionalized carbon dots for focused most cancers remedy in opposition to hypoxic tumors based mostly on an 808 nm laser-triggered three-pathway technique. Adv. Ther. 1, 1800041 (2018).


    Google Scholar
     

  • Chung, Y. J. et al. Photomodulating carbon dots for spatiotemporal suppression of Alzheimer’s β-amyloid aggregation. ACS Nano 14, 16973–16983 (2020).

    CAS 

    Google Scholar
     

  • Yu, Y. et al. Bortezomib-encapsulated CuS/carbon dot nanocomposites for enhanced photothermal remedy by way of stabilization of polyubiquitinated substrates within the proteasomal degradation pathway. ACS Nano 14, 10688–10703 (2020).

    CAS 

    Google Scholar
     

  • Zhang, X. et al. Carbon nitride hole theranostic nanoregulators executing laser-activatable water splitting for enhanced ultrasound/fluorescence imaging and cooperative phototherapy. ACS Nano 14, 4045–4060 (2020).

    CAS 

    Google Scholar
     

  • Li, D. et al. Supra-(carbon nanodots) with a robust seen to near-infrared absorption band and environment friendly photothermal conversion. Mild Sci. Appl. 5, e16120–e16120 (2016).

    CAS 

    Google Scholar
     

  • Xu, G. et al. In vivo tumor photoacoustic imaging and photothermal remedy based mostly on supra-(carbon nanodots). Adv. Healthc. Mater. 8, 1800995 (2019).


    Google Scholar
     

  • Liang, Y.-C. et al. Phosphorescent carbon-nanodots-assisted Förster resonant power switch for reaching crimson afterglow in an aqueous resolution. ACS Nano 15, 16242–16254 (2021).

    CAS 

    Google Scholar
     

  • Geng, B. et al. Carbon dot-sensitized MoS2 nanosheet heterojunctions as extremely environment friendly NIR photothermal brokers for full tumor ablation at an ultralow laser publicity. Nanoscale 11, 7209–7220 (2019).

    CAS 

    Google Scholar
     

  • Jia, Q. et al. Self-assembled carbon dot nanosphere: a sturdy, near-infrared light-responsive, and vein injectable photosensitizer. Adv. Healthc. Mater. 6, 1601419 (2017).


    Google Scholar
     

  • Guan, M. et al. A flexible and clearable nanocarbon theranostic based mostly on carbon dots and gadolinium metallofullerene nanocrystals. Adv. Healthc. Mater. 5, 2283–2294 (2016).

    CAS 

    Google Scholar
     

  • Wang, H. et al. Biocompatible PEG-chitosan@carbon dots hybrid nanogels for two-photon fluorescence imaging, near-infrared mild/pH dual-responsive drug service, and synergistic remedy. Adv. Funct. Mater. 25, 5537–5547 (2015).

    CAS 

    Google Scholar
     

  • Solar, S. et al. Tumor microenvironment stimuli‐responsive fluorescence imaging and synergistic most cancers remedy by carbon‐dot–Cu2+ nanoassemblies. Angew. Chem. Int. Ed. 59, 21041–21048 (2020).

    CAS 

    Google Scholar
     

  • Hou, L. et al. Transformable honeycomb-like nanoassemblies of carbon dots for regulated multisite supply and enhanced antitumor chemoimmunotherapy. Angew. Chem. Int. Ed. 60, 6581–6592 (2021).

    CAS 

    Google Scholar
     

  • Gong, N. et al. Carbon-dot-supported atomically dispersed gold as a mitochondrial oxidative stress amplifier for most cancers remedy. Nat. Nanotechnol. 14, 379–387 (2019).

    CAS 

    Google Scholar
     

  • Zhao, H. et al. Microenvironment-driven cascaded responsive hybrid carbon dots as a multifunctional theranostic nanoplatform for imaging-traceable gene exact supply. Chem. Mater. 30, 3438–3453 (2018).

    CAS 

    Google Scholar
     

  • Jia, Q. et al. A magnetofluorescent carbon dot meeting as an acidic H2O2-driven oxygenerator to manage tumor hypoxia for simultaneous bimodal imaging and enhanced photodynamic remedy. Adv. Mater. 30, 1706090 (2018).


    Google Scholar
     

  • Zhi, B. et al. Multicolor polymeric carbon dots: synthesis, separation and polyamide-supported molecular fluorescence. Chem. Sci. 12, 2441–2455 (2021).

    CAS 

    Google Scholar
     

  • Han, Y. et al. Machine-learning-driven synthesis of carbon dots with enhanced quantum yields. ACS Nano 14, 14761–14768 (2020).


    Google Scholar
     

  • Wang, X. et al. Carbon-dot-based white-light-emitting diodes with adjustable correlated coloration temperature guided by machine studying. Angew. Chem. Int. Ed. 60, 12585–12590 (2021).

    CAS 

    Google Scholar
     

  • Meng, W. et al. Biomass-derived carbon dots and their purposes. Vitality Environ. Mater. 2, 172–192 (2019).

    CAS 

    Google Scholar
     

  • Hansen, S. F., Hansen, O. F. H. & Nielsen, M. B. Advances and challenges in the direction of consumerization of nanomaterials. Nat. Nanotechnol. 15, 964–965 (2020).

    CAS 

    Google Scholar
     

  • Qu, D. & Solar, Z. The formation mechanism and fluorophores of carbon dots synthesized: by way of a bottom-up route. Mater. Chem. Entrance. 4, 400–420 (2020).

    CAS 

    Google Scholar
     

  • Rigodanza, F. et al. Snapshots into carbon dots formation by a mixed spectroscopic method. Nat. Commun. 12, 2640 (2021).

    CAS 

    Google Scholar
     

  • de Boëver, R., Langlois, A., Li, X. & Claverie, J. P. Graphitic dots combining photophysical traits of natural molecular fluorophores and inorganic quantum dots. JACS Au 1, 843–851 (2021).


    Google Scholar
     

  • Solar, S., Zhang, L., Jiang, Ok., Wu, A. & Lin, H. Towards high-efficient crimson emissive carbon dots: facile preparation, distinctive properties, and purposes as multifunctional theranostic brokers. Chem. Mater. 28, 8659–8668 (2016).

    CAS 

    Google Scholar
     

  • Zhang, L., Lin, Z., Yu, Y. X., Jiang, B. P. & Shen, X. C. Multifunctional hyaluronic acid-derived carbon dots for self-targeted imaging-guided photodynamic remedy. J. Mater. Chem. B 6, 6534–6543 (2018).

    CAS 

    Google Scholar
     

  • Huang, D. et al. Backside-up synthesis and structural design technique for graphene quantum dots with tunable emission to close infrared area. Carbon 142, 673–684 (2019).

    CAS 

    Google Scholar
     

  • Misra, S. Ok. et al. Carbon dots with induced floor oxidation permits imaging at single-particle stage for intracellular research. Nanoscale 10, 18510–18519 (2018).

    CAS 

    Google Scholar
     

  • Zeng, Q., Feng, T., Tao, S., Zhu, S. & Yang, B. Precursor-dependent structural variety in luminescent carbonized polymer dots (CPDs): the nomenclature. Mild Sci. Appl. 10, 142 (2021).

    CAS 

    Google Scholar
     

  • Zhu, S. et al. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): present state and future perspective. Nano Res. 8, 355–381 (2015).

    CAS 

    Google Scholar
     

  • Ren, J., Malfatti, L. & Innocenzi, P. Citric acid derived carbon dots, the problem of understanding the synthesis–construction relationship. C 7, 2 (2020).


    Google Scholar
     

  • Wei, S. et al. Multi-color fluorescent carbon dots: graphitized sp2 conjugated domains and floor state power stage co-modulate band hole reasonably than dimension results. Chem. Eur. J. 26, 8129–8136 (2020).

    CAS 

    Google Scholar
     

  • Zhu, S. et al. Extremely photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem. Int. Ed. 52, 3953–3957 (2013).

    CAS 

    Google Scholar
     

  • Essner, J. B., Kist, J. A., Polo-Parada, L. & Baker, G. A. Artifacts and errors related to the ever present presence of fluorescent impurities in carbon nanodots. Chem. Mater. 30, 1878–1887 (2018).

    CAS 

    Google Scholar
     

  • Ragazzon, G. et al. Optical processes in carbon nanocolloids. Chem 7, 606–628 (2021).

    CAS 

    Google Scholar
     

  • Zhao, Q., Tune, W., Zhao, B. & Yang, B. Spectroscopic research of the optical properties of carbon dots: current advances and future prospects. Mater. Chem. Entrance. 4, 472–488 (2020).

    CAS 

    Google Scholar
     

  • Wei, Ok. et al. Easy semiempirical technique for the placement willpower of HOMO and LUMO of carbon dots. J. Phys. Chem. C. 125, 7451–7457 (2021).

    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments